High Tc superconductivity in doped Mott insulators

Mohit Randeria

The Ohio State University
Columbus, OH 43210

Larkin Memorial Conference
Chernogolovka
June 2007
Outline:

• Introduction

• Sum Rules & p-h asymmetry

• Variational Theory of SC State

• Low energy excitations

• Superfluid density

• Disorder Effects
Failure of three central paradigms of Condensed Matter Physics

(1) Band theory fails for $x = 0$
parent insulator

(2) Landau's Fermi liquid theory fails for strange metal and pseudogap regimes

(3) BCS theory fails for Unconventional SC particularly for $x \ll 1$

Competing orders:
Antiferromagnetism;
Charge ordering; Spin glass
Circulating currents; DDW (?)

Hidden Quantum Critical Point under the dome(?)
Key question:
holes in a 2-d $S=1/2$ Mott insulator

hole concentration

$x \ll 1$
will focus here on:
T=0 SC state and low-lying excitations
In collaboration with:

A. Paramekanti, Toronto
N. Trivedi, Ohio State

A. Paramekanti, MR & N. Trivedi,
PRL 87, 217002 (2001); PRB 69, 144509 (2004);
PRB 70, 054504 (2004); PRB 71, 069505 (2005).

R. Sensarma, Ohio State

R. Sensarma, MR & N. Trivedi,
PRL 98, 027004 (2007) and unpublished.

F.C. Zhang, Hong Kong

MR, R. Sensarma, N. Trivedi & F.C. Zhang,
PRL 95, 137001 (2005).

P.W. Anderson, Princeton

P.W. Anderson, P.A. Lee, MR,
T. M. Rice, N. Trivedi & F.C. Zhang,
Hubbard model:

Minimal Model for CuO$_2$ planes

\[\mathcal{H} = \sum_{\mathbf{k}, \sigma} \epsilon(\mathbf{k}) c_{\mathbf{k} \sigma}^\dagger c_{\mathbf{k} \sigma} + U \sum_{\mathbf{r}} n_{\mathbf{r} \uparrow} n_{\mathbf{r} \downarrow} \]

\[\epsilon(\mathbf{k}) = -2t \left(\cos k_x + \cos k_y \right) + 4t' \cos k_x \cos k_y \]

\[U \gg t, |t'| \]

\[J = \frac{4t^2}{U} \]

\[J \leq |t'| \leq t \ll U \rightarrow 3.6 \text{ eV} \]

- neutron \(\sim 100 \text{ mev} \)
- Raman \(t' \sim -t/4 \)
- photoemission
- band theory

\(~ 300 \text{ meV} \)
Outline:

• Introduction

• \textbf{Sum Rules & p-h asymmetry}

• Variational Theory of SC State

• Low energy excitations

• Superfluid density

• Disorder Effects
Qs: How does large U affect the low-energy properties of doped materials?

- MR, SenSarma, Trivedi & Zhang, PRL 95, 137001 (2005)

Particle-hole asymmetry in Spectral function:
Exact sum rules for Projected electrons at $T=0$

$P = \prod_i \left(1 - n_i^\uparrow n_i^\downarrow \right)$

No assumptions about
- ground state
- broken symmetries
- translational invariance

Im$G(r, r'; \omega)$
Lehmann Representation
\rightarrow Energy-integrated
Sum Rules
P-H asymmetry: **Exact** sum rules for local DOS

Local Hole doping

\[\langle n(r) \rangle = 1 - x(r) \]

Extracting electrons:

\[\int_{-\infty}^{0} d\omega N(r; \omega) = 1 - x(r) \]
(filled sites)

Adding electrons:

\[\int_{0}^{\Omega_L} d\omega N(r; \omega) = 2x(r) + 2 |\langle K(r) \rangle| / U \]

\(J < t \ll \Omega_L \ll U \)
(empty sites + ...)

\[|\langle K(r) \rangle| / U \sim O(xt/U) \]
Increasing p-h Asymmetry with Underdoping

Phase diagram of \(\text{Ca}_{2-x}\text{Na}_x\text{CuO}_2\text{Cl}_2 \)

K. Ohishi et al., cond-mat/0412313

Averaged dI/dV spectra

Davis group (Cornell)
Using **Sum Rules** to estimate local density from STM data

conductance \(g(r; eV) = M(r)N(r; \omega = eV) \)

Unknown matrix element \(M(r) \) cancels out in **ratio**

\[
R(r) \equiv \frac{\int_0^{\Omega_L} d\omega g(r; \omega)}{\int_{-\infty}^0 d\omega g(r; \omega)} = \frac{2x(r)}{[1-x(r)]} + \mathcal{O}\left(\frac{xt}{U}\right)
\]

Measured

Determine \(x(r) \)

\(R(r) \)-maps

Strategy for theoretical attack on the superconducting state

No theory of Strange metal

Diagrammatic approaches -- Cannot reach Mott insulator

Use a variational approach to look directly at the T=0 SC state and low-lying excitations

Need to cross many phases to reach the SC
Outline:

• Introduction

• Sum Rules & p-h asymmetry

• Variational Theory of SC State

• Low energy excitations

• Superfluid density

• Disorder Effects
Variational Ground State Wavefunction

\[| \Psi_0 > = \exp(-iS) \mathbf{P} | \text{dBCS} > \]

\[| \text{dBCS} > = \text{d-wave BCS state} \]

variational parameters \(\Delta \) and \(\mu \)

\[U = \infty \]

Gutzwiller Projection:

\[P = \prod_i \left(1 - n_{i\uparrow}n_{i\downarrow} \right) \]

\[\exp(-iS) = \text{Unitary transformation:} \]

Hubbard \(\rightarrow tJ + \ldots \) brings in the scale \(J \)

Kohn (‘64); Gross, Joynt, Rice (‘87)
\[|\Psi_0\rangle \equiv \mathcal{P}|BCS\rangle = \mathcal{P}
\sum_{r,r'} \varphi(r-r') c_{r\uparrow}^\dagger c_{r'\downarrow}^\dagger \frac{N^2}{2} |0\rangle \]
S=0 pairing induced by superexchange $J = \frac{4t^2}{U}$

Anderson (1987)
Baskaran et al (1987)
Kotliar (1988)
Zhang, Gros, Rice, and Shiba (1988)

\textbf{d-wave symmetry} \\
\rightarrow \text{Partners in a pair never at the same site}

\textbf{Projection P} \\
\rightarrow \text{eliminate all double occupancy}
• What are the properties of the Projected SC \(P|dBCS\) \>?

• How do these compare with those of the High Tc cuprates?
\[|\Psi_0\rangle = P |BCS\rangle \]

Variational Monte Carlo method: only known way to treat P exactly

Gutzwiller approximation:

\[\langle K.E. \rangle \sim \frac{2x}{(1+x)} \langle K.E. \rangle_0; \quad \langle s(i)s(j) \rangle \sim \frac{4}{(1+x)^2} \langle s(i)s(j) \rangle_0 \]

GA Calculation:

- “renormalized”
- mean field theory

- analytical insights
- excited states
- dynamical correlations
- disorder effects
Pairing & Superconductivity

Pairing \rightarrow variational Δ

d-wave SC order parameter Φ
\rightarrow from ODLRO $\langle c^\dagger c^\dagger cc \rangle$

Strong Coulomb U
$\Phi(x) \sim x \text{ as } x \rightarrow 0$

P \rightarrow local, quantum phase fluctuations

$\Delta \neq \Phi_{SC}$
Variational Estimate of SC Energy Gap

Variational QP state \(|k\sigma\rangle = e^{-iS} P \gamma_{k\sigma}^\dagger |\text{dBCS}\rangle \)

QP excitation energy \(\rightarrow \) SC gap

\(\text{SC Gap} = \text{Variational} \ \Delta \)

- \(\sim \) factor of 2 larger than experiment
- same \(x \)-dependence as experiment

Competition between SC and AFM as \(x \to 0 \)

Energetics: energies of different states differ by few \(\% \) \(J \to \) details of \(H \) are important

At \(x = 0 \) AF magnetism wins;
RVB spin-liquid insulator
Energy/bond = \(-0.3199\) J

\(\nu/s \)
AFM Long range order
Energy/bond = \(-0.3346\) J
Trivedi & Ceperley, (1989)

- AFM for \(x < 7\% \)
- SC for \(x > 7\% \)

\(J/ t = 0.3, \)
\(t'/ t = -0.3 \)
\(t''/ t = 0.2 \)

Shih, Chen, Chou, & TK Lee,
PRB 70, 220502(R) (2004)
Hole Doping:
- AFM insensitive to \(t' \)
- SC grows with \(t' \)

Electron Doping:
- AFM grows with \(t' \)
- SC suppressed with \(t' \)

S. Pathak, V. Shenoy, N. Trivedi & MR
Outline:

- Introduction
- Sum Rules & p-h asymmetry
- Variational Theory of SC State
- Low energy excitations:
 * nodal quasiparticles
 * “underlying Fermi surface”
- Superfluid density
- Disorder Effects
Low Energy Excitations in SC state

Sharp Nodal Quasiparticles
- existence
- $k_F(x)$
- coherent spectral weight $Z(x)$
- dispersion $v_F(x)$

Moments of spectral function = equal-time correlators

$$M_\ell(k) = \int_{-\infty}^{0} d\omega \, \omega^\ell A(k, \omega)$$

Singularities in $M_\ell(k) \iff$ gapless Quasiparticles
Nodal QP Spectral Weight Z

Loss of coherence with underdoping

$Z_{\text{nodal}}(x)\propto 2\frac{x}{(1+x)} + O(xt/U)$

- **GA**

- **MC**: Paramekanti, MR, Trivedi, PRL (2001)
- **MR**: Sensarma et al., PRL (2005)
- **Expt**: Johnson et al., PRL (2001)

ARPES Bi2212
Dispersion of Nodal Quasiparticles

Nodal V_F or m^* independent of x

as $x \to 0$

\[Z \sim x \Rightarrow |\partial \Sigma'/\partial \omega| \sim 1/x \]

\[v_F = \text{const.} \Rightarrow |\partial \Sigma'/\partial k| \sim Jax/x \]

Σ' has singular $1/x$ dependence on both ω and k along zone diagonal

- **MC**: Paramekanti. MR, Trivedi, PRL(2001)
- **GA**: Sensarma et al, PRL (2005)
x-dependence of the Momentum distribution

\[n(k) = \frac{1}{2} \]

"FS" topology change at \(x \approx 0.2 \); depends sensitively on \(t'/t \)

Expt: H. Ding, et.al
PRL (1997)
Qs: Is there a way to determine the "underlying FS" that is gapped out in a SC state at $T = 0$?

BCS answer: $G_{11}^{bcs}(k, \omega) = \frac{\omega - \xi_k}{\omega^2 + E_k^2}$

$G_{11}^{bcs}(k, 0) = 0 \Rightarrow \xi_k = 0$

(but ... see below!)

Is SC state "FS" given by $G(k, 0) = 0$?

(1,1)-component of Nambu G

cf. Fermi surface in Landau's FLT $G(k, 0) = \infty$
Unlike the normal Landau FL, the SC state “FS”...

\[G(k, 0) = 0 \] does not enclose \(n \) electrons

No Luttinger Sum Rule for state with ODLRO

\[\Phi[\tilde{G}] \text{ with } \frac{\delta \Phi}{\delta \tilde{G}} = \sum \int d\omega \sum_k \text{Tr}\{\tau_3 \tilde{G}\} = (n_{\uparrow} + n_{\downarrow}) \]

“Number is not conserved in SC state”

[Dzyloshinskii, PRB(2003)]

• Angle-Resolved Photoemission expts.
-- measure locus of zero-energy ARPES intensity
-- “minimum gap locus”
which “looks like a Fermi surface”. What does this mean?
Various SC state “FS” definitions lead to similar contours, but all of them violate the Luttinger count.

\[
\left| \frac{\delta n}{n} \right| \sim \left(\frac{\Delta}{E_f} \right)^2
\]

Size of violation

Sign of violation related to “FS” topology.
Experiments:
Consistent with prediction, but not definitive yet
* determination of x
* k-resolution

Theory:
Sensarma, MR & Trivedi
PRL 98, 027004 (2007)

ARPES experiment:
T. Yoshida et. al,
PRB 74, 224510 (2006)
Outline:

• Introduction

• Sum Rules & p-h asymmetry

• Variational Theory of SC State

• Low energy excitations

• Superfluid density

• Disorder Effects
Optical Spectral Weight or Drude Weight

\[\omega_p^* = \frac{4\pi e^2}{d} D_{\text{low}} \]

\[D_{\text{low}} = \frac{2}{\pi} \int_0^{\Omega_c} d\omega \, \text{Re} \sigma(\omega) \]

\[J < t \ll \Omega_c \ll U \]

Values & trend in agreement with optics:
Orenstein, et al., PRB (1990)
Cooper, et al., PRB (1993)

Upper Bound on Superfluid Density

\[\rho_s \leq D_{\text{low}} \]

\[\Rightarrow \rho_s \to 0 \]

as \(x \to 0 \)
Implications of SC state results for Pseudogap:

For large x, BCS-like: $\Delta \ll \rho_s$
For small x, non-BCS: $\rho_s \ll \Delta$

$T_C \sim \min \{\rho_s, \Delta\}$

Effect of Long-Wavelength Quantum Phase Fluctuations:

T= 0 Self-Consistent Harmonic Approximation

Paramekanti, MR, Ramakrishnan & Mandal
PRB (2000)

\[\rho_s = \rho_s^0 \exp \left(-\langle \delta \theta^2 \rangle / 2 \right) \]
T-dependence of Superfluid density \((T \ll T_c)\)

\[
\rho_s(T) = \rho_s(0) - \frac{2 \ln 2}{\pi} \alpha^2 \left(\frac{v_F}{v_2}\right) T + \ldots
\]

\[
\lambda^{-2}(T) = 4\pi e^2 D_s(T)/(\hbar^2 c^2 d)
\]

\[
\rho_s(0, x) \leftarrow \text{doping dependence near Mott insulator}
\]

T-dependence from nodal QPs

Nodal QP dispersion

\[
E_k \approx \sqrt{(v_F \delta k_\perp)^2 + (v_2 \delta k_\parallel)^2}
\]

\[
j = \alpha e v_F \leftarrow \text{Current carried by nodal QPs}
\]

backflow corrections
\[J_{nqp} = \langle qp | \hat{J} | qp \rangle = \alpha e v_F \]

Current carried by a Nodal Quasiparticle
\[
\alpha = \text{"Effective charge" of QP}
\]

\[\alpha(x) \]

tJ Monte Carlo
Nave, Ivanov & P.A.Lee, PRB (2005)

our Gutzwiller Approximation result for tJ model:

\[J_{nqp} = e Z v_F^0 \]

\[\alpha \approx g_t / (g_t + 1/6) \]

\[= x/(1.08x + 0.08) \]
Slope of SF density:

\[\alpha(x) \quad \text{and} \quad \frac{d\rho_s}{dT} \]

UBC YBCO data
Broun et al,
cond-mat/0509223
Outline:

• Introduction
• Sum Rules & p-h asymmetry
• Variational Theory of SC State
• Low energy excitations
• Superfluid density
• Disorder Effects
Why are HTSC's so robust against disorder?

* (most) impurities lie off CuO$_2$ planes

* the coherence length is very short
 \(\rightarrow \) Spatially inhomogeneous response
 not captured by standard A-G theory

* Disorder effects are suppressed
 in strongly correlated SCs
Inhomogeneous response to impurities:
--- Bogoliubov-deGennes (BdG) theory

Correlation effects
--- inhomogeneous Gutzwiller approx. (GA)

\[g_t(r, r') = g_t(r)g_t(r') \]
\[g_t(r) = \left[\frac{2x(r)}{1 + x(r)} \right]^{1/2} \]

Compare results with and without correlations:

For correlated system:
- fewer low-energy excitations
- robust nodal QPs - “V” in DOS protected
 - nodes in k-space protected
Response to weak (Born) impurities:

Local density $n(i)$

Local d-wave pairing amplitude $\Delta(i)$

Short healing length in correlated system

Impurity potential is renormalized by interactions

Correlations + disorder

Only disorder

$\langle n \rangle = 0.8$

$n_{imp} = 0.01$

$V_{imp} = t$

Longer healing length in calculation which ignores correlations
Where do the low energy excitations live?

\[A(k, \omega) = \mathcal{F} \mathcal{T}_{r \rightarrow k} \langle \text{Im} \ G(r, R, \omega) \rangle_R \]

\[r = r_1 - r_2; \quad R = (r_1 + r_2)/2 \]

Nodes are protected

Nodal QPs much less affected by Disorder than the Antinodal QPs

\[A(k, |\omega| \leq 0.02) \]
In the correlated system

- low energy ‘V’ from nodal QPs
 - very weakly affected by disorder
- disorder induces fewer low-energy excitations

Spatially averaged DOS

Correlations + disorder

Only disorder

\[|\omega| \leq 0.02t \]
Summary: SC in doped Mott insulators

- p-h asymmetry in STM & ARPES
- local $x(r)$ from sum rule ratio

- SC “dome” with optimal doping
- energy gap and SC order have qualitatively different x-dependence

- Evolution from large x BCS-like SC to small x SC near Mott insulator
- nodal QPs: $k_F(x), Z(x), V_F(x)$
- underlying “Fermi surface”
- optical spectral weight and superfluid density $\rho_S(x; T)$

- disorder effects suppressed in presence of strong correlations
The end
Canonical Transformation $\exp(iS)$
transforms Hubbard to tJ model
(plus three-site terms)

\[
\begin{align*}
\mathcal{K}_0 &= - \sum_{\mathbf{r}, \mathbf{r}', \sigma} t_{\mathbf{r}\mathbf{r}'} \left[n_{\mathbf{r}\bar{\sigma}} c_{\mathbf{r}\sigma}^{\dagger} c_{\mathbf{r}'\sigma} n_{\mathbf{r}'\bar{\sigma}} + h_{\mathbf{r}\bar{\sigma}} c_{\mathbf{r}\sigma}^{\dagger} c_{\mathbf{r}'\sigma} h_{\mathbf{r}'\bar{\sigma}} \right] \\
\mathcal{K}_{+1} &= - \sum_{\mathbf{r}, \mathbf{r}', \sigma} t_{\mathbf{r}\mathbf{r}'} n_{\mathbf{r}\bar{\sigma}} c_{\mathbf{r}\sigma}^{\dagger} c_{\mathbf{r}'\sigma} h_{\mathbf{r}'\bar{\sigma}} \\
\mathcal{K}_{-1} &= - \sum_{\mathbf{r}, \mathbf{r}', \sigma} t_{\mathbf{r}\mathbf{r}'} h_{\mathbf{r}\bar{\sigma}} c_{\mathbf{r}\sigma}^{\dagger} c_{\mathbf{r}'\sigma} n_{\mathbf{r}'\bar{\sigma}} \\
&= \frac{1}{U} (\mathcal{K}_{+1} - \mathcal{K}_{-1}) + \frac{1}{U^2} ([\mathcal{K}_{+1}, \mathcal{K}_0] + [\mathcal{K}_{-1}, \mathcal{K}_0])
\end{align*}
\]

Kohn (1964); Gros, Joynt, Rice (1987); MacDonald, Girvin, Yoshioka (1988)
Gutzwiller Approximation:

approximation scheme to analytically evaluate matrix elements in Projected states

\[\langle \Phi_0 | \mathcal{P} Q \mathcal{P} | \Phi_0 \rangle \simeq g_Q(x) \langle \Phi_0 | Q | \Phi_0 \rangle \]

examples:

\[\langle c_{i \sigma}^\dagger c_{j \sigma} \rangle \simeq \frac{2x}{(1+x)} \langle c_{i \sigma}^\dagger c_{j \sigma} \rangle_0 \]

\[\langle s_i s_j \rangle \simeq \frac{4}{(1+x)^2} \langle s_i s_j \rangle_0 \]

\[g_t = \frac{\langle c_{i \sigma}^\dagger c_{j \sigma} \rangle}{\langle c_{i \sigma}^\dagger c_{j \sigma} \rangle_0} \]

\[g_t = \left[\frac{n_{r' \uparrow} (1-n_r) n_{r \uparrow} (1-n_{r'})}{n_{r' \uparrow} (1-n_{r' \uparrow}) n_{r \uparrow} (1-n_{r \uparrow})} \right]^{1/2} = \frac{2x}{1+x} \]

\[
\begin{array}{c}
| i \rangle \uparrow & \quad \text{projected} \\
| f \rangle & \quad \text{unprojected}
\end{array}
\]

\[
\begin{array}{c}
| i \rangle \uparrow & \quad \text{projected} \\
| f \rangle & \quad \text{unprojected}
\end{array}
\]
Singularities of Spectral Moments & Gapless QPs

\[A(k, \omega) = -\text{Im} G(k, \omega + i0^+) / \pi \]
\[= \sum_m \left[|\langle m | c_{k\sigma}^\dagger |0 \rangle|^2 \delta(\omega + \omega_0 - \omega_m) + |\langle m | c_{k\sigma} |0 \rangle|^2 \delta(\omega - \omega_0 + \omega_m) \right] \]

\[M_\ell(k) \equiv \int_{-\infty}^{0} d\omega \omega^\ell A(k, \omega) \]

\[M_0(k) = \int_{-\infty}^{0} d\omega A(k, \omega) = \sum_m |\langle m | c_{k\sigma} |0 \rangle|^2 = n(k) \]

Jump discontinuity: \(k_F \) & \(Z \)

\[M_1(k) = \int_{-\infty}^{0} d\omega \omega A(k, \omega) = \sum_m (\omega_0 - \omega_m) |\langle m | c_{k\sigma} |0 \rangle|^2 \]
\[= \langle c_{k\sigma}^\dagger [c_{k\sigma}, \mathcal{H} - \mu N] \rangle \]

Slope discontinuity: \(V_F \)