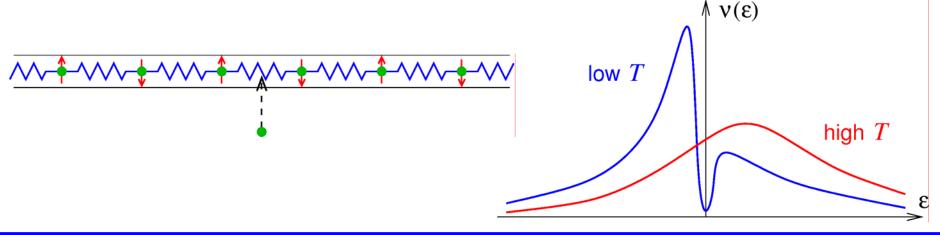
# Asymmetric Zero-Bias Anomaly for Strongly Interacting Electrons in One Dimension

#### Konstantin Matveev

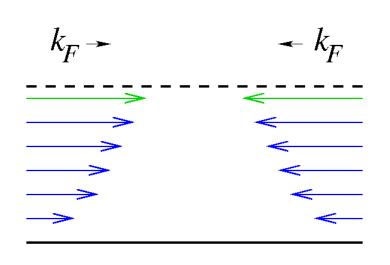
In collaboration with: A. Furusaki (RIKEN)

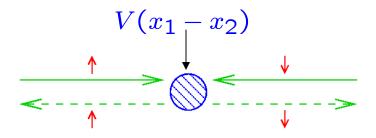
L. I. Glazman (U. Minnesota)





#### Interaction strength





Backscattering amplitude for two electrons at the Fermi surface  $t \sim \frac{iV(2k_F)}{\hbar v_F}$ 

Strong interactions: 
$$\frac{V(2k_F)}{\hbar v_F} \gg 1$$

At strong backscattering electrons do not move freely, but are instead confined to finite regions of space:



# Short-range interactions

#### **Hubbard model:**

$$H = -t \sum_{i} [c_{i,\uparrow}^{\dagger} c_{i+1,\uparrow} + c_{i,\downarrow}^{\dagger} c_{i+1,\downarrow} + \text{h.c.}] + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}.$$

$$holons \qquad \qquad U \gg t \qquad \text{spinons}$$

$$Ogata \& Shiba, 1990$$

$$H_{c} = -t \sum_{i} [c_{i}^{\dagger} c_{i+1} + \text{h.c.}]. \qquad H_{s} = J \sum_{l} S_{l} \cdot S_{l+1}.$$

Exchange constant 
$$J = \frac{4t^2}{U} n_e \left(1 - \frac{\sin 2\pi n_e}{2\pi n_e}\right)$$

Two energy scales:

Holons, 
$$E_F \sim t$$
 Spinons,  $J \sim t^2/U$ 

$$J\ll E_F$$

#### Long-range interactions

Quantum wires: 
$$V(x) = \frac{e^2}{|x|}$$
.

At low electron density *n*, compare kinetic and Coulomb energies:

$$E_{\text{kin}} = \frac{\hbar^2 k_F^2}{2m} \propto n^2, \quad E_{\text{Coul}} = \frac{e^2}{r} \propto n.$$

Coulomb energy dominates:



Electrons form a Wigner crystal and stay near their lattice sites

Density excitations are elastic waves in the crystal (plasmons)

$$\mathcal{H}_c = \frac{p^2}{2mn} + \frac{1}{2}nms^2 \left(\frac{du}{dx}\right)^2$$

u(x) is displacement of the crystal, p(x) is momentum density.

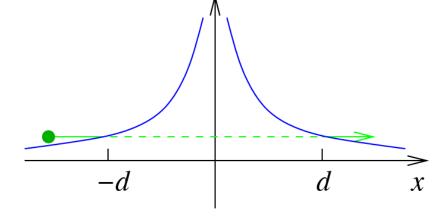
# Spin coupling



To first approximation the spins do not interact

Weak exchange due to tunneling through the Coulomb barrier

$$J \propto \exp\left(-rac{\eta}{\sqrt{na_B}}
ight)$$



Antiferromagnetic spin chain:

$$H_s = \sum_l JS_l \cdot S_{l+1}$$



Exchange energy is very small:

$$J \ll E_F$$

### Spin-incoherent regime



At small J there is a broad range of energies between J and  $E_{\it F}$ 

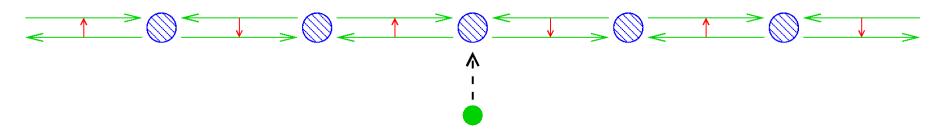
In the range of temperatures  $J \ll T \ll E_F$  charge excitations (holons) form a degenerate Fermi system, while spins are completely random.

#### New behavior is expected for

- 1. Conductance [KM, 2004]
- 2. Tunneling density of states [Cheianov & Zvonarev, 2004; Fiete & Balents, 2005]

#### Tunneling density of states

Consider the problem of electron tunneling into a strongly interacting 1D system:



In the simplest case of the Hubbard model the density of states

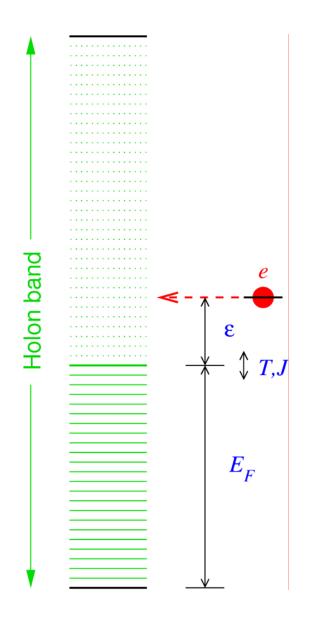
$$u(\varepsilon) \propto \frac{1}{|\varepsilon|^{1/2}} \frac{1}{\sqrt{\ln(E_F/|\varepsilon|)}}, \quad J \ll T \ll |\varepsilon| \ll E_F.$$

[Cheianov & Zvonarev, 2004; Fiete & Balents, 2005]

On the other hand,

$$u(arepsilon)\propto rac{1}{|arepsilon|^{3/8}}, \quad T=0, \; J\ll |arepsilon|\ll E_F.$$
[Penc, Mila & Shiba, 1995]

#### Questions



- 1. In the Hubbard model at  $U\gg t$  the electrons essentially become non-interacting spinless fermions. Why is there an enhancement of the density of states at low energies?
- 2. Why does the density of states at energy  $\epsilon$  depend on the temperature when  $T \ll \epsilon$ ?

### Luttinger liquid & Bosonization



$$H = \frac{\hbar v}{2\pi} \int dx \left[ K(\partial_x \theta)^2 + K^{-1} (\partial_x \phi)^2 \right].$$

 $\phi$  and  $\theta$  are bosonic fields;  $\phi(x)$  is the displacement of the system at point x from equilibrium,  $\partial_x \theta$  is momentum density

Luttinger-liquid parameter  $\,K$  depends on the interaction strength. For repulsive interactions  $\,K < 1.$ 

Electron creation operator:

$$\psi(x) = \frac{1}{\sqrt{2\pi\alpha}} e^{i[k_F x + \phi(x)] - i\theta(x)}$$

### Bosonization for electrons with spin

$$\phi_{\uparrow}, \theta_{\uparrow} \text{ and } \phi_{\downarrow}, \theta_{\downarrow}$$



Charge and spin modes: 
$$\phi_{c,s} = \frac{\phi_{\uparrow} \pm \phi_{\downarrow}}{\sqrt{2}}$$
 and  $\theta_{c,s} = \frac{\theta_{\uparrow} \pm \theta_{\downarrow}}{\sqrt{2}}$ 

Hamiltonian:  $H = H_c + H_s$ 

$$H_c = \frac{\hbar v_c}{2\pi} \int \left[ K_c(\partial_x \theta_c)^2 + K_c^{-1} (\partial_x \phi_c)^2 \right] dx \qquad T \ll v_c k_F \sim E_F$$

$$H_{s} = \frac{\hbar v_{s}}{2\pi} \int \left[ K_{s} (\partial_{x} \theta_{s})^{2} + K_{s}^{-1} (\partial_{x} \phi_{s})^{2} \right] dx$$
$$+ \frac{2g_{1\perp}}{(2\pi\alpha)^{2}} \int \cos[\sqrt{8}\phi_{s}(x)] dx$$
$$T \ll v_{s}k_{F} \sim J$$

### Intermediate energies

At  $J \sim T \ll E_F$  the charge excitations are still bosonic:

$$H_c = \frac{\hbar v_c}{2\pi} \int dx \left[ K(\partial_x \theta)^2 + K^{-1} (\partial_x \phi)^2 \right].$$

- 1. For short range repulsion (e.g., Hubbard) one finds this by bosonizing the non-interacting fermions. Then K=1.
- 2. In the Wigner crystal case, this is the phonon Hamiltonian.

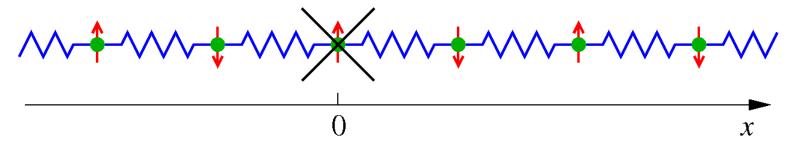
Spin excitations are described by the Heisenberg model

$$H_s = \sum_l JS_l \cdot S_{l+1}$$

It can be bosonized, but only if  $T \ll J$ .

How to make a fermion out of bosons and spins?

### Electron annihilation operator (1)



- 1. We destroy a spinless fermion and
- 2. Remove a site from the spin chain

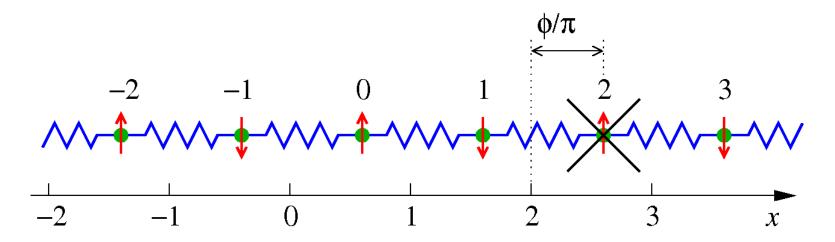
$$\psi_{\uparrow}(0) = \psi_h(0) Z_{0,\uparrow}$$

[Penc, Mila & Shiba, 1995]

Operator  $Z_{0,\uparrow}$  removes site 0 if it has spin  $\uparrow$ , and destroys the state otherwise. [Sorella & Parola, 1992]

This expression does not explicitly account for the fact that phonons shift the spin chain!

#### Electron annihilation operator (2)



The shift of electrons by density waves is conveniently accounted for in bosonization approach:

$$\psi_{\uparrow}(x) = \frac{1}{\sqrt{2\pi\alpha}} e^{\pm i[k_F x + \phi(x)] - i\theta(x)} Z_{l,\uparrow} \Big|_{l = \frac{k_F x + \phi(x)}{\pi}}$$

### Electron annihilation operator (3)

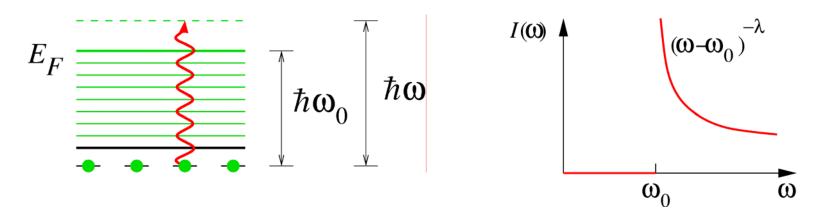
Let us perform Fourier transform on Z-operator:

$$Z_{l,\uparrow} = \int_{-\pi}^{\pi} \frac{dq}{2\pi} z_{\uparrow}(q) e^{iql}$$

$$\psi_{\uparrow}(x) = \int_{-\pi}^{\pi} \frac{dq}{2\pi} z_{\uparrow}(q) \frac{e^{ik_F(1+\frac{q}{\pi})x}}{\sqrt{2\pi\alpha}} e^{i(1+\frac{q}{\pi})\phi(x)-i\theta(x)}$$

- 1. At q=0 the green factor is the destruction operator for a spinless fermion (holon).
- 2. At  $q \neq 0$  it represents an operator that removes a fermion and adds a phase shift  $\delta = -q$  to the boundary conditions. C.f. x-ray absorption edge problem [Shotte & Shotte, 1969]

### X-ray absorption edge problem



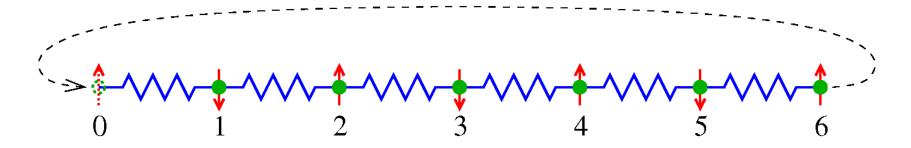
When X-rays excite electrons above the Fermi level, the remaining core hole scatters all the electrons in the Fermi sea. The resulting absorption intensity shows a power-law singularity.

Bosonization solution [Shotte & Shotte, 1969]

$$\psi \propto e^{i[\phi-\theta]} \quad \longrightarrow \quad \psi \propto e^{i[(1-\delta/\pi)\phi-\theta]}$$

 $\delta$  is the scattering phase shift of the core-hole potential

### Periodic boundary conditions



Move the whole system to the right by system size L

Total momentum is quantized  $PL = 2\pi m$ 

$$PL = \sum_{i=1}^{N} p_i L + qN = \sum_{i=1}^{N} (p_i L + q) = \sum_{i=1}^{N} 2\pi m_i$$

As a holon goes around the circle, it acquires a phase factor

$$e^{ip_iL} = e^{-iq}$$

[Penc, Mila & Shiba, 1995]

#### Tunneling density of states

Fermion operators  $\implies$  Green's functions  $\implies$  Density of states

$$\nu_{\sigma}^{\pm}(\varepsilon) = \nu_0 \int_{-\pi}^{\pi} \frac{dq}{2\pi} \frac{c_{\sigma}^{\pm}(q)}{\Gamma(\lambda(q) + 1)} \left(\frac{|\varepsilon|}{E_F}\right)^{\lambda(q)} \qquad J, T \ll |\varepsilon| \ll E_F$$

At  $q \neq 0$  we find a power-law singularity with the exponent

$$\lambda(q) = \frac{1}{2} \left[ \left( 1 + \frac{q}{\pi} \right)^2 K + \frac{1}{K} \right] - 1$$

Short-range interactions (Hubbard): non-interacting holons, K=1

Properties of the spin chain enter through the equal-time correlators

$$c_{\sigma}^{+}(q) = \sum_{l} \langle Z_{l,\sigma} Z_{0,\sigma}^{\dagger} \rangle e^{-iql},$$

$$c_{\sigma}^{-}(q) = \sum_{l} \langle Z_{0,\sigma}^{\dagger} Z_{l,\sigma} \rangle e^{-iql}$$

$$c_{\sigma}^{-}(q) = \sum_{l} \langle Z_{0,\sigma}^{\dagger} Z_{l,\sigma} \rangle e^{-iqt}$$

#### Density of states for the Hubbard model at $U\gg t$

In the limit  $|\epsilon|/E_F \to 0$  the true asymptotic behavior of the density of states is

density of states is 
$$J,T \ll |\varepsilon| \ll E_F$$
 
$$\nu_\sigma^\pm(\varepsilon) = \frac{\nu_0}{2\sqrt{2}} \, c_\sigma^\pm(\pi) \, \left(\frac{E_F}{|\varepsilon|}\right)^{1/2} \frac{1}{\sqrt{\ln(E_F/|\varepsilon|)}}$$

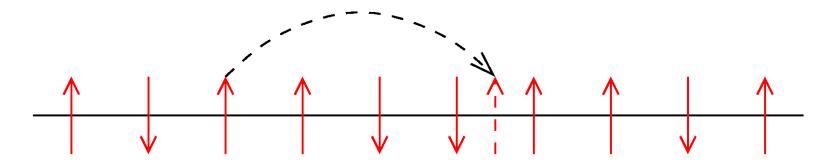
Compare with the earlier results

$$u(arepsilon) \propto rac{1}{|arepsilon|^{1/2}} rac{1}{\sqrt{\ln(E_F/|arepsilon|)}}, \quad J \ll T \ll |arepsilon| \ll E_F.$$

[Cheianov & Zvonarev, 2004; Fiete & Balents, 2005]

$$u(arepsilon) \propto rac{1}{|arepsilon|^{3/8}}, \quad T=0, \; J \ll |arepsilon| \ll E_F.$$
[Penc, Mila & Shiba, 1995]

### High temperature



All *l* spins between the initial and final positions must be aligned

$$\langle Z_{l,\uparrow} Z_{0,\uparrow}^{\dagger} \rangle = \frac{1}{2^{|l|}}, \ \langle Z_{0,\uparrow}^{\dagger} Z_{l,\uparrow} \rangle = \frac{1}{2^{|l|+1}}$$

$$c_{\uparrow}^{+}(\pi) = \frac{1}{3}, \ c_{\uparrow}^{-}(\pi) = \frac{1}{6}$$

Factor of 2: one can always add spin \( \ \), but the probability of removing one is \( \frac{1}{2} \).

#### Density of states:

(1) 
$$u(arepsilon) \propto 1/\sqrt{|arepsilon|}$$

(2) 
$$\nu(+\varepsilon) = 2\nu(-\varepsilon)$$

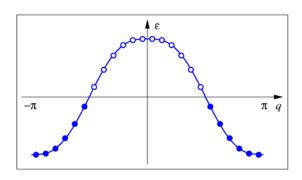
#### Zero temperature

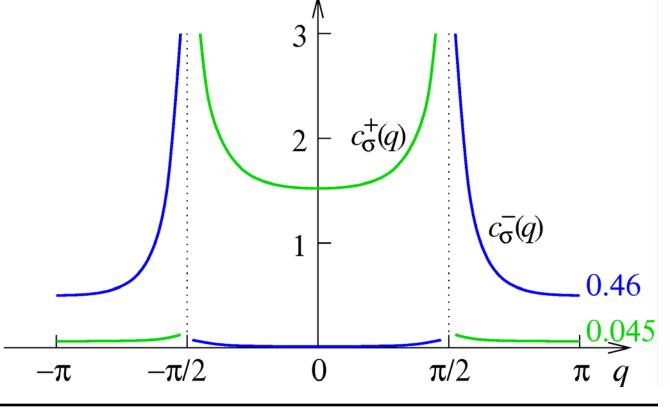
#### Numerical results for

$$c_{\sigma}^{+}(q)$$
 and  $c_{\sigma}^{-}(q)$ 

[Penc, Mila & Shiba, 1995]

$$c_{\sigma}^{+}(\pi) \approx 0.1 c_{\sigma}^{-}(\pi)$$





#### Density of states:

(1) 
$$u(arepsilon) \propto 1/\sqrt{|arepsilon|}$$

(2) 
$$\nu(+\varepsilon) \approx 0.1\nu(-\varepsilon)$$

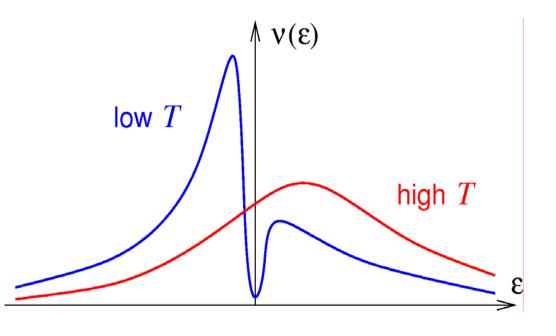
#### Subleading contribution at $\epsilon > 0$

$$\tilde{\nu}^+(\varepsilon) \propto \frac{1}{\varepsilon^{3/8}}$$

### Summary

 The tunneling density of states is asymmetric around the Fermi level;

• The asymmetry changes sign when temperature is tuned between  $T\gg J$  and  $T\ll J$  regimes;



 For short-range interactions, the nature of the peak in the density of states is similar that in the x-ray absorption edge problem.