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Interaction strength

Strong interactions:
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At strong backscattering electrons do not move freely, but are
Instead confined to finite regions of space:
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Short-range interactions
Hubbard model:

H = _tZ[CI,TCi+1,T+Cg,¢Ci+1,¢+h'C']+UZ ;AT |-
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holons U>t
Ogata & Shiba, 1990

spinons
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Exchange constant J — =X, (1 =l 27”7’6)
U 27'('?’2,6

Two energy scales:

Holons, Fp ~1 [ J < EFJ
Spinons,  J ~ t2/U




Long-range interactions
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Quantum wires: V(x) = ﬂ
I
At low electron density n, compare kinetic and Coulomb energies:
h2ks e?
Eyin = —L o« n? Fcour= —xmn.

Coulomb energy
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dominates:

Electrons form a Wigner crystal and stay near their lattice sites
Density excitations are elastic waves in the crystal (plasmons)
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He = b I Enms2 <_u)

2mn dx

u(x) is displacement of the crystal, p(z) is momentum density.



Spin coupling

To first approximation the
spins do not interact

NNNW—ANN—ANN—ANN—ANN—-ANY

Weak exchange due to tunneling
through the Coulomb barrier
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Antiferromagnetic spin chain: ~ Hs = ) JS;- Sj4+1
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Exchange energy is very small; [ J L Ep ]




Spin-incoherent regime
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At small J there is a broad range of energies between J and E¢

In the range of temperatures J < /" << E 1 charge excitations
(holons) form a degenerate Fermi system, while spins are
completely random.

New behavior is expected for

1. Conductance [KM, 2004]

2. Tunneling density of states
[Cheilanov & Zvonarev, 2004; Fiete & Balents, 2005]



Tunneling density of states

Consider the problem of electron tunneling into a strongly
Interacting 1D system:
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In the simplest case of the Hubbard model the density of states
1 1

elY2\/in(Ep/le])

[Cheianov & Zvonarev, 2004; Fiete & Balents, 2005]

v(e)

J < T <K |e| < Ep.

On the other hand,

1
v(e) | |3/8’ T=0, JL|e| < EF.
£

[Penc, Mila & Shiba, 1995]




Questions

1. In the Hubbard model at U >t
the electrons essentially become
non-interacting spinless
fermions. Why is there an
enhancement of the density of
states at low energies?

2. Why does the density of states
at energy € depend on the
temperature when 7'« €7?



Luttinger liguid & Bosonization

e / de [K (8:0)% + K~ 1(0:0)?] .

¢ and @ are bosonic fields; #(x) is the displacement of the
system at point x from equilibrium, 6,£1s momentum density

Luttinger-liquid parameter K depends on the interaction
strength. For repulsive interactions K < 1.

Electron creation operator:

Y(x) = 2 Z[kFCU‘l‘Qb(CU)]—Z@(a:)
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Bosonization for electrons with spin

Two pairs of bosonic fields: T "T85 5050000060000 0>

¢1,04 and ¢, 0, A IR IR LR
+ 04+ 0
Charge and spin modes:  ¢¢,s = qu\/;i and fcs = T\/ﬁ +
Hamiltonian: H — H, H,
H, = Z”C / [Kc(amec)Q + Kgl(axqbc)ﬂ de T <vckp~ EF
7
hvs _
Hy = 22 [ [Ks(0:09)% + K (00652 da
T < ’UskﬁF ~ J

| éiif)z / cos[v/8¢s(x)]dx



Intermediate energies
At J ~ T <« Er the charge excitations are still bosonic:

H, = Z‘; / dz [K(&I;@)Q + K_l(é)xqb)z] .

1. For short range repulsion (e.g., Hubbard) one finds this by
bosonizing the non-interacting fermions. Then K = 1.

2. In the Wigner crystal case, this is the phonon Hamiltonian.

Spin excitations are described by the Heisenberg model

Hs = ZJSZ - Sj41
[
It can be bosonized, but only if 1" < J.

How to make a fermion out of bosons and spins?




Electron annihilation operator (1)
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1. We destroy a spinless fermion and
2. Remove a site from the spin chain
P+(0) = ¥, (0)Zg 4 [Penc, Mila & Shiba, 1995]

Operator ZO,T removes site O If it has spin 1, and destroys
the state otherwise. [Sorella & Parola, 1992]

This expression does not explicitly account
for the fact that phonons shift the spin chain!




Electron annihilation operator (2)

Y
-2 -1 0 12 3
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-2 —1 0 1 2 3 X

The shift of electrons by density waves is conveniently
accounted for in bosonization approach:

Py(a) = o eFilbrata@)]-i0() 7
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Electron annihilation operator (3)

Let us perform Fourier T dq idl
transform on Z-operator: 24 = / 2—2 (Q) €
T ZLTT
; q
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¢T($) o / T 2T %(Q) 2T - i

1. At g = 0 the green factor is the destruction operator for
a spinless fermion (holon).

2. At g # 0 It represents an operator that removes a

fermion and adds a phase shift 0 = -q to the boundary
conditions. C.f. x-ray absorption edge problem [Shotte
& Shotte, 1969]



X-ray absorption edge problem
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When X-rays excite electrons above the Fermi level, the
remaining core hole scatters all the electrons in the Fermi sea.
The resulting absorption intensity shows a power-law singularity.

Bosonization solution [Shotte & Shotte, 1969]

W o et o o ell(10/m)e—0]

J is the scattering phase shift of the core-hole potential



Periodic boundary conditions
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Move the whole system to the right by system size L
Total momentum is quantized P, = 2mm

N N N
PL= ) piL4+qgN=)> (piL+q) =) 2mm,

As a holon goes around the circle, it acquires a phase factor
ez’piL — e—iq

[Penc, Mila & Shiba, 1995]



Tunneling density of states

Fermion operators =—) Green’s functions —) Density of states

N B T dq C(:)-E(Q) ‘5‘
vg () = 1o /—71' 27 M (A(g) + 1) <EF

A(9)
) J, T < |e| < Ep
At g = O we find a power-law singularity with the exponent
1 q)Q 1
A =—|({l14+-=-) K4+—| —1
(0) =3 [( + - + K]

Short-range interactions (Hubbard): non-interacting holons, <=1
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Density of states for the Hubbard model at U>t

In the limit |¢[/E — O the true asymptotic behavior of the

density of states is
Y J.T < |e| < Ep
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VE(e) = 20 () (
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Compare with the earlier results
1 1

€12 in(EF/le])

[Cheianov & Zvonarev, 2004; Fiete & Balents, 2005]

J < T < |e| < Ep.

v(e) o

1
|5|3/8’

T =0, J<K|e| < EF.
[Penc, Mila & Shiba, 1995]
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High temperature
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All' spins between (Z, ng T> i’ (Z(JS TZl T> _ ll :
the initial and final LR Hl o s
positions must be -+ L
aligned (M) =3 g lm) =z

Factor of 2. one can
always add spin 1, but the
probability of removing
one is Y.

Density of states:

(1) v(e) < 1/y/[el
(2) v(4e) =2v(—¢)



Zero temperature

Numerical results for

cr(q) and ¢, (q)
[Penc, Mila & Shiba, 1995]
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Density of states:

(1) v(e) x 1//|e]
(2) v(4<)=0.1v(—¢)

Subleading contribution at € > O
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Summary

e The tunneling density of
states is asymmetric A v(e)
around the Fermi level;

low T

 The asymmetry changes
sign when temperature

high T
IS tuned between 7" > J
and 7'« J regimes;

e For short-range interactions, the nature of the peak in
the density of states is similar that in the x-ray absorption
edge problem.
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