Coulomb effects in a mixed granular system
near the percolation threshold
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The system: mixture of conducting and nonconducting grains.

Coulomb blocade and special role of critical clusters in transport near
the percolation threshold.

Arrhenius, Mott, Efros-Shklovskii, and more exotic laws.

Coulomb anomaly in cluster-cluster transitions: specifics of fractality and
possibility for nontrivial stretched exponential /'-dependence of conductivity.



Mixture of conducting and nonconducting grains

.'. Q -- metal grain. . -- nonmetal grain.
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EC i 82/20 -- charging energy.
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Tunneling via intermediate
nonmetal grain: Conductance

Direct tunneling between metal grains:

conductance G g < G

We will consider the case (G > ]-, g < 1



Standard percolation approach, no Coulomb effects: 1 > F/
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Structure of conducting clusters just below the percolation threshold

A Clusters distribution
T

Power law

Exponential tail
§ R

e Most sites belong
to small clusters.

e Extremely large clusters
with size > & are rare.

Intercluster hops necessarily involve e Conducting electrons
poor conductances g stay predominantly

on critical clusters
Here the Coulomb interaction comes into play! with size ~ § .



Bridges for intercluster hops
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No Coulomb (1" > E) strong Coulomb (1" < E¢)
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Considerable contribution of
multilink hops, small clusters
participate in transport.

Mutilink hops are suppressed by Coulomb
blocade or inelastic cotunneling.
Small clusters are irrelevant.



Effective network of critical clusters
Niink ~ (&/a)%ink > 1

-- average number of single-link bridges
between two neighboring critical clusters.

. — ’ﬁ'\ (critical cluster)

G*(£) ~ G(a/f)f & (F  --classic conductance across a critical cluster.

g (‘S) ~ Njink > ¢ -- effective intercluster conductance.

We will assume that still g* (§) < 1, G*(§), but G*(&) can be arbitrary.

e For G™(&) > 1 clusters are effectively point-like objects.

e For G*(£) <« 1 clusters are extended objects with internal
degrees of freedom.



Dielectric screening by polarized clusters

Main contribution:
subcritical clusters of size

Charging energy for critical clusters:

The only role of subcritical clusters —
screening of Coulomb interaction
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Self-averaged range 7T >>€

0.974, ford=2
0.85, ford=3

Main contribution:
critical clusters of size 5

E}(€) ~ Ec(a/€)T! <« E¢



Large effective conductance G*(&) > 1

Mapping onto the standard granular system

s possible with g — g*(&), Eco — EH(§)

Two characteristic temperatures: I ~ Eé(ﬁ), Tpg ~ Eé(f)/ﬁ

where # —In [(Eg(g)/T)Q /g*(g)] - large logarithm.

° TES < T < TO -- nearest neighbor hopping via critical clusters

o ~ 270" (&) exp {—EL(&)/T)

o 'K TES -- variable range inelastic cotunneling via resonant clusters

o ~ £274g* (&) exp {—(Tips/T)1/?}



Nearest neighbor hopping

Each hop is a real thermoactivated intergrain transition.



Variable range cotunneling

Real states only on resonant (green) grains with anomalously small Eé

Intermediate hops (dashed lines) involve virtual states.



Small effective conductance G*(¢) < 1.

Three characteristic temperatures:

) B 2.00, ford=2
To ~ EcG™7T = Ec(OGT(&)77, v = { 1.44, ford=73

Te ~ EG(E)G* (&) < Ty, Tgps~Te/L KL Te.

o[ < T < TO -- Coulomb zero-bias-amomaly mechanism for intercluster hops:

_ ~ ~ 0.33, ford=2
o~ 27097 exp {~(To/T)7}, &= { 0.41, for d =3

e I'pg <1 <Ie - nearestneighbor hopping via critical clusters
(the same as before, with the same activation energy)

o T < TES -- variable range inelastic cotunneling via extended objects
(the same formula, as before, but with new T'pg )



The Coulomb anomaly regime
electon Electron and hole have yet to tunnel from
under the Coulomb barrier.

hole

This is a diffusion on a fractal !

An approach a la Levitov and Shytov leads to
suppression of intercluster hopping rate:

g* (&) — g*(&)e™>

L oq ~ 0O (qa), Uy~ (a),

- / 27w /1/§ (27r)dw + 0¢4q? ed?=

Manifestations of fractality: /] 7é 0, s 73 0.

Definitions: resistance of d-dimensional fractal cube:

= 0.974, ford=2
R@%yH’C:{L3 for d =3

o(L) ~ L274/R(L) ~L7F,  (=[j+2-d

L




Peculiarities of the fractal case

Uq ~ x
~ 0 (qa)
/ 2nw /1/5 (27T)dw + 04q°U. oq ~ o0 (qa)F, Uy~ T

e The integral has ifrared power-law divergence for any dimension d = 1, 2, 3.
The reason — slowing down of diffusion on fractal at { — oo orir — ©o.

e For 7 > 7. the integral converges at w ~ T, g ~ (T/GEp)Y/(CH5+1) 5 =1

Thus, the action does not depend on £. The tunneling stops before the charge has
time to spread over the entire cluster.
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5 ~
e As a result, ~ (E) Y = #
T) > %7 L
Fractal case: Nonfractal case:
>0 1, for d=1, infrared singularity
(=4 0, ford=2, logarithmic case

in all dimensions. —1, for d = 3, ultraviolet singularity

e ForT < T, the spatial integral converges at g ~ 5—1, here S ~ EL/T.



The phase diagram
T A
B0 [ exp(—(10/1)7)

Coulomb anomaly
EL(E) F
L

Classic (no 1'-dependence)

Nearest neighbor hopping: exp{—E#5(£)/T'}

Variable range cotunneling

Efros-Shklovskii: exp{—(Tgg(&)/T) 1/2}
or Mott law)

- - = I
g* (&) 1 G*(&)
e All lines are crossovers.

e The Mott law can only be observed for low level of charge disorder.

e To the left from the dashed line — critical regime. T - dependence --?77?



Conclusions

e The conduction process near percolation threshold involves direct hops of
electrons between large critical clusters. Small clusters are excluded from
this process due to Coulomb blocade.

e If the conductance across a critical cluster G* (5) >> 1 , then the system
is equivalent to “simple” granular metal with critical clusters as “supergrains”.

For G* (f) < 1 an unusual stretch-exponential law for conductivity

~ 0.33, ford =2
o o exp {—(To/T)%}, O‘_{o.41, for d =3

may be observed due to Coulomb zero-bias anomaly effect, dramatically
enhanced by fractality of critical clusters.



